Feature selection is an important part of building a machine learning model. By eliminating redundant or misleading features from data, the machine learning model can achieve better performance while reducing the demand on com-puting resources. Metaheuristic algorithms are mostly used to implement feature selection such as swarm intelligence algorithms and evolutionary algorithms. However, they suffer from the disadvantage of relative complexity and slowness. In this paper, a concise method is proposed for universal feature selection. The proposed method uses a fusion of the filter method and the wrapper method, rather than a combination of them. In the method, one-hoting encoding is used to preprocess the dataset, and random forest is utilized as the classifier. The proposed method uses normalized frequencies to assign a value to each feature, which will be used to find the optimal feature subset. Furthermore, we propose a novel approach to exploit the outputs of mutual information, which allows for a better starting point for the experiments. Two real-world dataset in the field of intrusion detection were used to evaluate the proposed method. The evaluation results show that the proposed method outperformed several state-of-the-art related works in terms of accuracy, precision, recall, F-score and AUC.


翻译:功能选择是建立机器学习模型的一个重要部分。 通过消除数据中的冗余或误导特性,机器学习模型可以取得更好的性能,同时减少对电算资源的需求。 元元数算法主要用于执行特征选择, 如群情智能算法和进化算法等。 但是,它们受到相对复杂和缓慢的不利因素的影响。 在本文中, 提出了一个用于通用特征选择的简明方法。 拟议的方法使用了过滤法和包装法的结合, 而不是两者的结合。 在方法中, 使用一个加热编码来预处理数据集, 随机森林作为分类器使用。 提议的方法使用正常频率来给每个特性指定一个值, 用于找到最佳的特性子集。 此外, 我们提出一个新的方法来利用共同信息的产出, 从而可以更好地开始实验。 在入侵探测领域使用两个真实的数据集来评价拟议的方法。 评价结果显示, 拟议的方法在精确性、 精确性、 重力、 重力、 重力、 重力、 联合性、 重力方面, 。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
专知会员服务
37+阅读 · 2020年11月24日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
5+阅读 · 2020年6月16日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员