Many machine learning methods assume that the training and test data follow the same distribution. However, in the real world, this assumption is very often violated. In particular, the phenomenon that the marginal distribution of the data changes is called covariate shift, one of the most important research topics in machine learning. We show that the well-known family of covariate shift adaptation methods is unified in the framework of information geometry. Furthermore, we show that parameter search for geometrically generalized covariate shift adaptation method can be achieved efficiently. Numerical experiments show that our generalization can achieve better performance than the existing methods it encompasses.


翻译:许多机器学习方法假设训练数据和测试数据遵循相同的分布。然而,在现实世界中,这个假设经常被违反。特别地,数据的边缘分布变化的现象称为协变量转移,是机器学习中最重要的研究课题之一。我们展示了著名的协变量转移适应方法家族在信息几何框架下的统一性。此外,我们证明了几何广义协变量转移适应方法的参数搜索可以高效实现。数值实验表明,我们的推广可以取得比其所包含的现有方法更好的性能。

0
下载
关闭预览

相关内容

信息几何[Ama16, AJLS17, Ama21]旨在解开概率分布族的几何结构,并研究它们在信息科学中的应用。信息学是将统计学、信息论、信号处理、机器学习和人工智能等重新组合起来的一个总称。信息几何是计量经济学家H. Hotelling(1930)和统计学家C. R. Rao(1945)出于数学上的好奇心而独立诞生的,他们考虑了概率分布的参数族,称为统计模型,是一种带有费雪度量张量的黎曼流形[Nie20]。信息几何通过使用微分几何的概念(如曲率)和张量微积分来解决问题。在他的开创性工作中,Rao考虑了流形上的黎曼测地距离和测地球来研究统计学中的分类和假设检验问题。
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
14+阅读 · 2021年9月11日
Neural Eigenmap: 基于谱学习的结构化表示学习
PaperWeekly
1+阅读 · 2022年11月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关VIP内容
相关资讯
Neural Eigenmap: 基于谱学习的结构化表示学习
PaperWeekly
1+阅读 · 2022年11月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员