The single-mode bosonic channel is addressed with classical interference in the modulation and with side information at the transmitter. This model can viewed as the quantum counterpart of the classical random-parameter Gaussian channel. Based on Costa's writing-on-dirty-paper result (1983), the effect of the channel parameter can be canceled even when the decoder has no side information, and regardless of the input power constraint. For both homodyne and heterodyne detection with a coherent-state protocol, the model reduces to a classical channel with either real or complex-valued Gaussian noise. Thereby, by applying Costa's dirty paper coding strategy, we observe that the effect of the classical interference can be canceled for those channels as well. Then, we consider the bosonic channel with joint detection, for which the classical results do not apply, and derive a dirty-paper coding lower bound. Furthermore, considering the special case of a pure-loss bosonic channel, we demonstrate that the optimal coefficient for dirty paper coding is not necessarily the MMSE estimator coefficient as in the classical setting.
翻译:单色色调色带通过传统干扰调节器和发射器侧端信息处理。 这个模型可以被视为古典随机参数高斯海峡的量对等物。 根据科斯塔的纸面写作结果(1983年), 频道参数的效果可以取消, 即使解码器没有侧面信息, 也不管输入力限制。 对于以一致状态协议检测的同质体和异质检测, 该模型可以降低为古典频道, 使用真实或复杂的高斯噪音。 因此, 通过应用科斯塔肮脏的纸质编码策略, 我们观察到古典干扰的效果也可以被这些频道取消。 然后, 我们用联合检测来考虑圆形频道的效果, 传统结果并不适用, 并得出一个更低的脏纸串联。 此外, 考虑到纯损博质频道的特殊案例, 我们证明脏纸编码的最佳系数不一定是古典设置的 MMSE 节点系数 。