In this paper, we introduce Holographic Spectral Multiplexing (HSM) as a novel technique to enable multiple-input multiple-output (MIMO) communication in optical networks. HSM uses the spectral space of ultrashort laser pulses to create line codes in the form of 2D holograms. The pulse processing is performed in the temporal Fourier domain by spatially dispersing the pulse frequency components in a spectral processing device (SPD). The 2D holograms are composed of the patterns of intensity disparities that an SLM inscribes on the spectrally-decomposed Fourier plane of the pulse. The holographic line codes defined in this way transform the ultrashort laser pulses into high-entropy data symbols, hence, enhance the communication's spectral efficiency. Unlike conventional optical multiplexing schemes (e.g., TDM, WDM, or SDM), HSM does not physically or abstractly separate the communication propagation space into subchannels. Rather, HSM realizes a MIMO communication paradigm by allowing the photonic waves under the pulse envelope to propagate in the same space so they scatter and interfere by chromatic dispersion. This allows HSM to form beams between the pixels of SLM at the sender and receiver sides and optimize the beam to adapt to channel scattering situations. In this way, HSM delivers a rate gain that in the best case exponentially increases the information rate of communication.
翻译:在本文中,我们引入了全光谱多光谱多元化(HSM),作为光学网络多光学传输多光谱多输出平面通信的一种新型技术。HSM使用超光谱激光脉冲的光谱空间,以2D全息图的形式创建线码。脉冲处理在时宽域通过光谱处理设备(SPD)中空间分散脉冲频率组件在Tourier域进行。2D全息图由高光谱分解的多光谱多输出平面(MIMO)通信的强度差异模式组成。以这种方式定义的全光谱线代码将超光谱激光脉冲转换成高光谱数据符号。脉冲在光谱处理设备(SPDM、WDM或SDM)中通过空间分布或抽象地将通信传播空间空间分成子网。相反,HSMSM在脉冲平流层中让最佳光谱波波波波波流到高光谱波段,使SMLMA的流流流波段能够将这种光谱波状波状波段的流流流波状传播速度在空间上传播。