In this paper, we propose a dual-module network architecture that employs a domain discriminative feature module to encourage the domain invariant feature module to learn more domain invariant features. The proposed architecture can be applied to any model that utilizes domain invariant features for unsupervised domain adaptation to improve its ability to extract domain invariant features. We conduct experiments with the Domain-Adversarial Training of Neural Networks (DANN) model as a representative algorithm. In the training process, we supply the same input to the two modules and then extract their feature distribution and prediction results respectively. We propose a discrepancy loss to find the discrepancy of the prediction results and the feature distribution between the two modules. Through the adversarial training by maximizing the loss of their feature distribution and minimizing the discrepancy of their prediction results, the two modules are encouraged to learn more domain discriminative and domain invariant features respectively. Extensive comparative evaluations are conducted and the proposed approach outperforms the state-of-the-art in most unsupervised domain adaptation tasks.


翻译:在本文中,我们提出一个双模块网络架构,采用一个域性歧视特性模块,鼓励域性变异特性模块学习更多的域性变异特性。拟议架构可适用于利用域性变异特性进行不受监督的域性调整的任何模型,以提高其提取域性变异特性的能力。我们以神经网络域-Adversarial培训模式为代表性算法进行实验。在培训过程中,我们向两个单元提供同样的投入,然后分别提取其特性分布和预测结果。我们提出差异性损失,以找出预测结果和两个单元间特征分布的差异。通过对抗性培训,最大限度地减少其特性分布的损失,尽量减少其预测结果的差异,鼓励这两个单元分别学习更多的域性差异性和变异特性。进行了广泛的比较评估,拟议的方法在大多数未受控制的域性适应任务中超越了最新技术。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
16+阅读 · 2021年7月18日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员