Bonnet et al. (FOCS 2020) introduced the graph invariant twin-width and showed that many NP-hard problems are tractable for graphs of bounded twin-width, generalizing similar results for other width measures, including treewidth and clique-width. In this paper, we investigate the use of twin-width for solving the propositional satisfiability problem (SAT) and propositional model counting. We particularly focus on Bounded-ones Weighted Model Counting (BWMC), which takes as input a CNF formula $F$ along with a bound $k$ and asks for the weighted sum of all models with at most $k$ positive literals. BWMC generalizes not only SAT but also (weighted) model counting. We develop the notion of "signed" twin-width of CNF formulas and establish that BWMC is fixed-parameter tractable when parameterized by the certified signed twin-width of $F$ plus $k$. We show that this result is tight: it is neither possible to drop the bound $k$ nor use the vanilla twin-width instead if one wishes to retain fixed-parameter tractability, even for the easier problem SAT. Our theoretical results are complemented with an empirical evaluation and comparison of signed twin-width on various classes of CNF formulas.
翻译:Bonneet 等人(FOCS 2020) 引入了图变双边图,并显示,许多NP-硬性问题对于捆绑的双边图和双边图都是可移动的,对包括树线和crique-width在内的其他宽度测量,包括树线和crique-width。在本文中,我们调查使用双边图解决配对性(SAT)和配方模型的计算。我们特别侧重于Bound-one 双边加权模型计算(BWMC),该模型将一个CNF公式与一个约束的美元作为投入,并询问所有模型的加权总和以最多为一美元正正立字值。BWMC不仅对SAT,而且对(加权)模型的计算都进行了一般化。我们开发了双边配方双边配方公式的概念,并确定了BWMC在以经认证的双维方美元加上美元作为参数时可以固定的比度。我们显示,这一结果很紧凑:它既不能固定地使用,也不可能固定地使用“基”格式,如果固定地使用“基”格式,也不固定地使用“基”评估。