Let $\mathbf{H}$ be the Cartesian product of a family of finite abelian groups. Via a polynomial approach, we give sufficient conditions for a partition of $\mathbf{H}$ induced by weighted poset metric to be reflexive, which also become necessary for some special cases. Moreover, by examining the roots of the Krawtchouk polynomials, we establish non-reflexive partitions of $\mathbf{H}$ induced by combinatorial metric. When $\mathbf{H}$ is a vector space over a finite field $\mathbb{F}$, we consider the property of admitting MacWilliams identity (PAMI) and the MacWilliams extension property (MEP) for partitions of $\mathbf{H}$. With some invariance assumptions, we show that two partitions of $\mathbf{H}$ admit MacWilliams identity if and only if they are mutually dual and reflexive, and any partition of $\mathbf{H}$ satisfying the MEP is in fact an orbit partition induced by some subgroup of $\Aut_{\mathbb{F}}(\mathbf{H})$, which is necessarily reflexive. As an application of the aforementioned results, we establish partitions of $\mathbf{H}$ induced by combinatorial metric that do not satisfy the MEP, which further enable us to provide counter-examples to a conjecture proposed by Pinheiro, Machado and Firer in \cite{39}.
翻译:Let\ mathbf{H} $ 是一个数量有限的ABLA组家族的产物 。 通过一种多元式的方法, 我们给一个使用加权表情度的分区 $\ mathbf{H} 提供足够的条件, 在某些特殊情况下也有必要这样做。 此外, 通过检查 Krawtchouk 多元分子的根部, 我们建立由组合制调制的 $\ mathbf{H} 驱动的非弹性分区 。 当 $\ mathb{H} 用于一个固定字段的矢量空间 $\ mathb{F} 时, 我们有足够的条件, 我们有足够的条件, 允许一个使用 MacLiams 身份( PAMIF) 和 MacLiams 扩展属性(MEP) 用于 $mathb{H} 的分区。 我们通过一些变异的假设, 我们显示, $maff{H} doWillismations 身份, 如果它们是相互的和反反向反应的域域域域,, 由 AL\\\\\\\ mab b broalalalalalb a b) max max 。