We study LFD, a base logic of functional dependence introduced by Baltag and van Benthem (2021) and its connections with the guarded fragment GF of first-order logic. Like other logics of dependence, the semantics of LFD uses teams: sets of permissible variable assignments. What sets LFD apart is its ability to express local dependence between variables and local dependence of statements on variables. Known features of LFD include decidability, explicit axiomatization, finite model property, and a bisimulation characterization. Others, including the complexity of satisfiability, remained open so far. More generally, what has been lacking is a good understanding of what makes the LFD approach to dependence computationally well-behaved, and how it relates to other decidable logics. In particular, how do allowing variable dependencies and guarding quantifiers compare as logical devices? We provide a new compositional translation from GF into LFD, and conversely, we translate LFD into GF in an `almost compositional' manner. Using these two translations, we transfer known results about GF to LFD in a uniform manner, yielding, e.g., tight complexity bounds for LFD satisfiability, as well as Craig interpolation. Conversely, e.g., the finite model property of LFD transfers to GF. Thus, local dependence and guarding turn out to be intricately entangled notions.


翻译:我们研究的是Baltag和van Bentthem(2021年)提出的功能依赖的基本逻辑LFD,即Baltag和van Bentem(2021年)采用的功能依赖的基本逻辑,以及它与第一级逻辑中受保护的零散GF的联系。与其他依赖性逻辑一样,LFD使用的语义是:可允许的可变分配任务组合。LFD区别在于它能够表达变量与当地对变量声明的依赖性。LFD的已知特征包括可变性、明确的非典型化、有限的模型属性和平衡性定性。其他特征,包括可兼容性的复杂性,迄今仍然开放。更普遍地说,缺乏的是很好地理解是什么使得LFD对依赖性的方法在计算上十分稳妥,以及它与其他可变逻辑的关系。特别是,如何允许不同依赖性和保护量化的参数与逻辑装置相比较?我们提供了一种从GFDFD到LFD的新的构成翻译,相反,我们用“最接近的构成性”的方式将LFD转化为GFFD。我们所知道的GFD的结果是以统一的方式,将GFFD的复杂程度转变为LFDFD,将LFD的复杂程度转化为FD。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员