Lidar data can be used to generate point clouds for the navigation of autonomous vehicles or mobile robotics platforms. Scan matching, the process of estimating the rigid transformation that best aligns two point clouds, is the basis for lidar odometry, a form of dead reckoning. Lidar odometry is particularly useful when absolute sensors, like GPS, are not available. Here we propose the Iterative Closest Ellipsoidal Transform (ICET), a scan matching algorithm which provides two novel improvements over the current state-of-the-art Normal Distributions Transform (NDT). Like NDT, ICET decomposes lidar data into voxels and fits a Gaussian distribution to the points within each voxel. The first innovation of ICET reduces geometric ambiguity along large flat surfaces by suppressing the solution along those directions. The second innovation of ICET is to infer the output error covariance associated with the position and orientation transformation between successive point clouds; the error covariance is particularly useful when ICET is incorporated into a state-estimation routine such as an extended Kalman filter. We constructed a simulation to compare the performance of ICET and NDT in 2D space both with and without geometric ambiguity and found that ICET produces superior estimates while accurately predicting solution accuracy.
翻译:Lidar 数据可用于生成自动飞行器或移动机器人平台导航的点云。 扫描匹配, 估算硬质变异的过程, 最能匹配两个点云, 是Lidar odology的基础, 这是一种死计。 当绝对传感器, 像 GPS 一样, 没有绝对传感器时, Lidar odor 数据特别有用 。 我们在这里提议了 透明接近 ELTID 变异( ICET) 的扫描匹配算法, 一种扫描匹配算法, 为当前最先进的正常分布变异( NDT) 提供了两个新的改进。 像 NDT 一样, ICET 将lidar 数据转换成 voxel, 适合 Gaussian 分布到每个 voxel 的点 。 ICET 第一次创新通过抑制这些方向的解决方案, 减少了大平坦表面的几何模糊度。 IC 第二次创新是推导出与连续点云的位置和方向变向方向相关的输出差; 当发现 IC 将IET 纳入州测度常规常规, 例如Kalman 过滤器, 和精确的IDD, 和精确的ID 和精确模拟, 。