GANs largely increases the potential impact of generative models. Therefore, we propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods, such as mode collapse and lack of flexibility. Furthermore, to prevent overfitting on small target domains, we introduce sparse subnetwork selection, that restricts the set of trainable neurons to those that are relevant for the target dataset. We perform comprehensive experiments on several challenging datasets using various GAN architectures (BigGAN, Progressive GAN, and StyleGAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs.
翻译:因此,我们提议一种新型知识转让方法,用于利用从一个或多个经过预先训练的GAN来挖掘对特定目标领域最有利的知识,从一个或多个经过预先训练的GAN中挖掘出一种对特定目标领域最有利的知识。这是利用一个采矿网络进行的,这个网络将确定每个经过预先训练的GAN输出样品的基因分布部分与目标领域最接近的GAN输出样品的哪一部分。采矿有效地将GAN取样引向潜藏空间的适当区域,这有利于后视微调,避免其他方法的病理,例如模式崩溃和缺乏灵活性。此外,为了防止在小目标领域过度配置,我们引进了稀有的子网络选择,将可训练的神经元组限制在与目标数据集相关的方面。我们利用各种GAN结构(BigGAN、进步GAN和StyleGAN)对若干具有挑战性的数据集进行了全面试验,并表明,拟议的方法称为MineGAN,有效地将知识转让到目标图像很少的领域,超过了现有方法。此外,MineGAN能够成功地将知识从多个事先训练过的GAN转让。