This study presents a comprehensive framework for constitutive modeling of a frame-invariant fractional-order approach to nonlocal thermoelasticity in solids. For this purpose, thermodynamic and mechanical balance laws are derived for nonlocal solids modeled using the fractional-order continuum theory. This includes revisiting the Cauchy's hypothesis for surface traction vector in order to account for long-range interactions across the domain of nonlocal solid. Remarkably, it is shown that the fractional-order model allows the rigorous localized application of thermodynamic balance principles unlike existing integral approaches to nonlocal elasticity. Further, the mechanical governing equations of motion for the fractional-order solids obtained here are consistent with existing results from variational principles. These fractional-order governing equations involve self-adjoint operators and admit unique solutions, in contrast to analogous studies following the local Cauchy's hypothesis. To illustrate the efficacy of this framework, case-studies for the linear and the geometrically nonlinear responses of nonlocal beams subject to combined thermomechanical loads are considered here. Comparisons with existing integer-order integral nonlocal approaches highlight a consistent softening response of nonlocal structures predicted by the fractional-order framework, irrespective of the boundary and thermomechanical loading conditions. This latter aspect addresses an important incongruence often observed in strain-based integral approaches to nonlocal elasticity.


翻译:此项研究为对固体中非本地的热弹性采用框架-变量分级法的构建建模提供了一个综合框架。 为此,对使用分级连续理论建模的非本地固体,将热力和机械平衡法推导为热力和机械平衡法。这包括重新审查Cauchy的表面牵引矢量假设,以说明非本地固体领域的远距离相互作用。值得注意的是,分级模型允许严格本地应用热力平衡原则,而与现有非本地弹性综合方法不同。此外,此处获得的分级固体运动的机械调节方程式与现行变异原则的结果是一致的。这些对等的分级法涉及自我联合操作者,并采用独特的解决办法,与本地固态固体的假设之后的类似研究形成对比。为了说明这一框架的功效,线性和非本地直线性和不直线性直线性非直线性对线性反应和不直线性反应方法与非本地性综合热力反应方法不同。这里考虑的是,对此处所获取的分级固体-级固体-单级反应结构的比较。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员