Frozen sectioning (FS) is the preparation method of choice for microscopic evaluation of tissues during surgical operations. The high speed of the procedure allows pathologists to rapidly assess the key microscopic features, such as tumour margins and malignant status to guide surgical decision-making and minimise disruptions to the course of the operation. However, FS is prone to introducing many misleading artificial structures (histological artefacts), such as nuclear ice crystals, compression, and cutting artefacts, hindering timely and accurate diagnostic judgement of the pathologist. Additional training and prolonged experience is often required to make highly effective and time-critical diagnosis on frozen sections. On the other hand, the gold standard tissue preparation technique of formalin-fixation and paraffin-embedding (FFPE) provides significantly superior image quality, but is a very time-consuming process (12-48 hours), making it unsuitable for intra-operative use. In this paper, we propose an artificial intelligence (AI) method that improves FS image quality by computationally transforming frozen-sectioned whole-slide images (FS-WSIs) into whole-slide FFPE-style images in minutes. AI-FFPE rectifies FS artefacts with the guidance of an attention mechanism that puts a particular emphasis on artefacts while utilising a self-regularization mechanism established between FS input image and synthesized FFPE-style image that preserves clinically relevant features. As a result, AI-FFPE method successfully generates FFPE-style images without significantly extending tissue processing time and consequently improves diagnostic accuracy. We demonstrate the efficacy of AI-FFPE on lung and brain frozen sections using a variety of different qualitative and quantitative metrics including visual Turing tests from 20 board certified pathologists.


翻译:解冻分解(FS)是手术操作期间组织组织进行微观观察评估的选择方法; 程序速度的高速使病理学家能够快速评估关键的微观特征,如肿瘤边缘和恶性状态,以指导外科决策,尽量减少手术过程的干扰; 然而,FS容易引入许多误导性人工结构(神职人员),如核冰晶、压缩和切割人工制品,妨碍对病理学家进行及时和准确的诊断性判断; 经常需要更多培训和长期经验,才能对冷冻部分进行高度有效和及时的诊断。 另一方面,金质标准组织组织结构的固定化和粘合性(FFPE)技术可以大大提高图像质量,但是一个非常耗时的过程(12至48小时),使它不适合内部使用。 我们提出了一种人工智能(AI)方法,通过计算将冷冻的整流层图像(FS-WSISI)转化为完全有效的诊断性能诊断性图像(FPE-S-S-SIFA-S-S-ILA ),在固定的图像处理过程中大幅延长一个内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、内部结构、结构、结构、内部结构、结构、结构、内部结构、内部结构、内部结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员