We consider the problem of constrained Markov Decision Process (CMDP) where an agent interacts with a unichain Markov Decision Process. At every interaction, the agent obtains a reward. Further, there are $K$ cost functions. The agent aims to maximize the long-term average reward while simultaneously keeping the $K$ long-term average costs lower than a certain threshold. In this paper, we propose CMDP-PSRL, a posterior sampling based algorithm using which the agent can learn optimal policies to interact with the CMDP. Further, for MDP with $S$ states, $A$ actions, and diameter $D$, we prove that following CMDP-PSRL algorithm, the agent can bound the regret of not accumulating rewards from optimal policy by $\Tilde{O}(poly(DSA)\sqrt{T})$. Further, we show that the violations for any of the $K$ constraints is also bounded by $\Tilde{O}(poly(DSA)\sqrt{T})$. To the best of our knowledge, this is the first work which obtains a $\Tilde{O}(\sqrt{T})$ regret bounds for ergodic MDPs with long-term average constraints.


翻译:我们考虑了限制的Markov决定程序的问题,即代理人与单链马可夫决定程序发生互动。在每次互动中,代理人都得到奖励。此外,还有美元的成本功能。代理人的目的是最大限度地提高长期平均报酬,同时将长期平均费用保持在低于某一阈值的水平以下。我们在本文件中提议CMDP-PSRL,这是一种基于事后抽样算法,代理人可以借此学习与CMDP互动的最佳政策。此外,对于美元、美元和直径美元的MDP,我们证明按照CMDP-PSRL算法,代理人可以将没有从最佳政策中积累收益的遗憾约束在美元/Tilde{(PO)}(美元/Sqrt{T)美元。此外,我们表明,对于任何以美元作为限制条件的违反行为也受美元/Tilde{(poly){(DSA)\qrt{T}美元约束。对于我们的知识中的最佳限制,这是我们获得MQQ_rrrrs的首项。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月5日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员