Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.


翻译:光谱群集(SC)是一种在图表上找到紧密关联社区的流行集成技术。 星体群集可以用于图形神经网络(GNNS),以实施属于同一组群的聚合节点的集合操作。 然而,拉普拉西亚星体的银共化成本昂贵,而且,由于集成结果针对图表,基于SC的集合方法必须对每个新样本进行新的优化。在本文中,我们提出了一个解决SC的这些局限性的图形集成方法。我们设计了一个普通化的最小化点集成问题,并训练一个GNNN来计算最小化这一目标的集成任务。我们基于GNN的落实是不同的,不需要对光谱分解进行计算,并且学习一个可快速评估外光谱图的集群功能。我们从拟议的组合方法中设计了一个图形集成操作器,以克服状态的图形集成技术的某些重大限制,并在若干受监管和未监督的任务中实现最佳性。

0
下载
关闭预览

相关内容

【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
40+阅读 · 2020年9月27日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
图神经网络综述:方法及应用 | Deep Reading
AI100
36+阅读 · 2019年3月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年4月29日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
图神经网络综述:方法及应用 | Deep Reading
AI100
36+阅读 · 2019年3月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年4月29日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员