We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary quadratic order $\mathcal{O}$ in an unknown ideal class $[\mathfrak{a}] \in \mathrm{Cl}(\mathcal{O})$ that connects two given $\mathcal{O}$-oriented elliptic curves $(E, \iota)$ and $(E', \iota') = [\mathfrak{a}](E, \iota)$. When specialized to ordinary elliptic curves over finite fields, our method is conceptually simpler and often somewhat faster than a recent approach due to Castryck, Sot\'akov\'a and Vercauteren, who rely on the Tate pairing instead. The main implication of our work is that it breaks the decisional Diffie-Hellman problem for practically all oriented elliptic curves that are acted upon by an even-order class group. It can also be used to better handle the worst cases in Wesolowski's recent reduction from the vectorization problem for oriented elliptic curves to the endomorphism ring problem, leading to a method that always works in sub-exponential time.
翻译:我们展示了如何使用 Weil 配对来评估一个未知的理想等级 $\ mathfrak{O}$\ mathcal{O} 的指定字符 。 当一个未知的理想等级 $[\ mathfrak{a}], $\ mathrm{Cl} (\ mathcal{O}) (\ mathcal{O}) 时, 我们的方法在概念上比较简单, 往往比最近对卡斯特里克、 Sot\'akov\a和Vercauten采取的方法要快一些, 后者依靠塔特配对。 我们工作的主要影响是, 它打破了决定性Diffie- Hellman 和$ (E,\ iota') = [mathfrak{a} = [E, lilictfrak}} (E, \ a) litota) $ 。 当一个偶数级类对普通的椭圆曲线进行专门处理时, 我们的方法在概念上可以更好地处理最坏的曲线, rod rod rod roform 问题, lax lax lax in the the the lax lax lax lax lax