We study the problem of allocating m indivisible items to n agents with additive utilities. It is desirable for the allocation to be both fair and efficient, which we formalize through the notions of envy-freeness and Pareto-optimality. While envy-free and Pareto-optimal allocations may not exist for arbitrary utility profiles, previous work has shown that such allocations exist with high probability assuming that all agents' values for all items are independently drawn from a common distribution. In this paper, we consider a generalization of this model with asymmetric agents, where an agent's utilities for the items are drawn independently from a distribution specific to the agent. We show that envy-free and Pareto-optimal allocations are likely to exist in this asymmetric model when $m=\Omega\left(n\, \log n\right)$, matching the best bounds known for the symmetric subsetting. Empirically, an algorithm based on Maximum Nash Welfare obtains envy-free and Pareto-optimal allocations for small numbers of items.
翻译:我们研究的是将不可分割的物品分配给具有添加剂公用事业的代理商的问题。 分配应当既公平又高效, 我们通过嫉妒自由的概念和Pareto最优化的概念来正式确定。 虽然对于任意的公用事业配置可能不存在无嫉妒和Pareto最佳分配, 但先前的工作表明,这种分配存在的可能性很高, 假设所有物品的所有代理商的价值都是从共同分布中独立得出的。 在本文中, 我们考虑用不对称代理商来概括这种模式, 使这些物品的代理商的公用事业独立于该代理商特有的分销商。 我们表明,在这种不对称模式中,当美元/ Omega\left(n\, log n\right) 与已知的对称子设置的最佳界限相匹配时, 可能存在无嫉妒和最佳分配。 以最大纳什福利为基础的算法获得无嫉妒和小件的Pareto-opatimal分配。