We are interested in the optimization of convex domains under a PDE constraint. Due to the difficulties of approximating convex domains in $\mathbb{R}^3$, the restriction to rotationally symmetric domains is used to reduce shape optimization problems to a two-dimensional setting. For the optimization of an eigenvalue arising in a problem of optimal insulation, the existence of an optimal domain is proven. An algorithm is proposed that can be applied to general shape optimization problems under the geometric constraints of convexity and rotational symmetry. The approximated optimal domains for the eigenvalue problem in optimal insulation are discussed.
翻译:我们有兴趣在PDE限制下优化 convex 域。 由于在 $\ mathbb{R ⁇ 3$ 中近似 convex 域的难度, 限制旋转对称域被用于将形状优化问题降低到二维设置。 为了优化在最佳绝缘问题中产生的隐性值, 已经证明存在一个最佳域。 提议了一种算法, 可以适用于在凝固和旋转对称等的几何限制下的一般形状优化问题。 讨论了最佳绝缘中易发生乙基值问题的近似最佳域 。