For the task of face verification, we explore the utility of harnessing auxiliary facial emotion labels to impose explicit geometric constraints on the embedding space when training deep embedding models. We introduce several novel loss functions that, in conjunction with a standard Triplet Loss [43], or ArcFace loss [10], provide geometric constraints on the embedding space; the labels for our loss functions can be provided using either manually annotated or automatically detected auxiliary emotion labels. We analyze the performance of our methods on nine different (CK+, PubFig, Tufts, VggFace2, LFW, YTF, MegaFace, IJB-B, IJB-C). Our results consistently show that the additional structure encoded about each face's emotions results in an embedding model that gives higher verification accuracy than training with just ArcFace or Triplet Loss alone. Moreover, the method is significantly more accurate than a simple multi-task learning approach. Our method is implemented purely in terms of the loss function and does not require any changes to the neural network backbone of the embedding function.
翻译:对于面部校验任务,我们探索了利用辅助面部情绪标签对嵌入空间施加明确几何限制的实用性。我们引入了几个新的损失功能,这些功能与标准的Triplet Loss[43]或Arcface损失[10]一道,为嵌入空间提供了几何限制;我们损失功能的标签可以使用人工加注或自动检测的辅助情感标签来提供。我们分析了我们在9种不同方法(CK+、PubFig、Tufts、VggFace2、LFW、YTF、MegaFace、IJB-B、IJB-C)上的表现。我们的结果一致表明,对每张脸部情感加码的额外结构导致嵌入模型比仅使用ArcFace或Triplet Loss的训练更准确。此外,这种方法比简单的多任务学习方法要准确得多。我们的方法在损失功能方面纯粹实施,不需要对嵌入功能的内心网络主干。