Purpose: This study aims to explore training strategies to improve convolutional neural network-based image-to-image registration for abdominal imaging. Methods: Different training strategies, loss functions, and transfer learning schemes were considered. Furthermore, an augmentation layer which generates artificial training image pairs on-the-fly was proposed, in addition to a loss layer that enables dynamic loss weighting. Results: Guiding registration using segmentations in the training step proved beneficial for deep-learning-based image registration. Finetuning the pretrained model from the brain MRI dataset to the abdominal CT dataset further improved performance on the latter application, removing the need for a large dataset to yield satisfactory performance. Dynamic loss weighting also marginally improved performance, all without impacting inference runtime. Conclusion: Using simple concepts, we improved the performance of a commonly used deep image registration architecture, VoxelMorph. In future work, our framework, DDMR, should be validated on different datasets to further assess its value.
翻译:目的:本项研究旨在探讨培训战略,以改进脑神经网络图像到成像成像的腹部成像登记。方法:考虑了不同的培训战略、损失功能和转移学习计划。此外,还提议了一个增殖层,除了产生能够动态损失权重的损耗层外,还产生人工培训成像对在飞行中产生人工培训成像的增殖层。结果:利用培训步骤中的分块指导登记,证明有利于深层次学习图像登记。将预先培训的模型从脑MRI数据集调整为腹部CT数据集,进一步提高后一种应用的性能,消除对大型数据集的需求,以产生令人满意的性能。动态减重还略微改进了性能,但不会影响推理时间。结论:使用简单的概念,我们改进了常用的深层图像登记结构(VoxelMorph)的性能。在今后的工作中,我们的框架DMR(DMR)应被验证为不同数据集,以进一步评估其价值。