We present \textbf{ACAD}, an \textbf{a}ffective \textbf{c}omputational \textbf{ad}vertising framework expressly derived from perceptual metrics. Different from advertising methods which either ignore the emotional nature of (most) programs and ads, or are based on axiomatic rules, the ACAD formulation incorporates findings from a user study examining the effect of within-program ad placements on ad perception. A linear program formulation seeking to achieve (a) \emph{{genuine}} ad assessments and (b) \emph{maximal} ad recall is then proposed. Effectiveness of the ACAD framework is confirmed via a validational user study, where ACAD-induced ad placements are found to be optimal with respect to objectives (a) and (b) against competing approaches.
翻译:我们提出\ textbf{ACAD}, 一种明显源于感官指标的广告框架 。 不同于忽视(大多数)节目和广告的情感性质或基于不言而喻规则的广告方法, ACAD的提法包含了一项用户研究的结果,研究方案内安排对广告概念的影响。 一种线性方案拟订,力求实现(a) 真正的评估和(b) 真正的评估和(emph{maximal} ad recall。 ACAD框架的有效性通过一项验证用户研究得到确认, 发现在目标(a) 和(b) 方面,ACDA 引起的广告安排被认为最符合目标(a) 和(b), 对抗相互竞争的方法。