The All-Pairs Shortest Paths (APSP) problem is one of the fundamental problems in theoretical computer science. It asks to compute the distance matrix of a given $n$-vertex graph. We revisit the classical problem of maintaining the distance matrix under a fully dynamic setting undergoing vertex insertions and deletions with a fast worst-case running time and efficient space usage. Although an algorithm with amortized update-time $\tilde O(n ^ 2)$ has been known for nearly two decades [Demetrescu and Italiano, STOC 2003], the current best algorithm for worst-case running time with efficient space usage runs is due to [Gutenberg and Wulff-Nilsen, SODA 2020], which improves the space usage of the previous algorithm due to [Abraham, Chechik, and Krinninger, SODA 2017] to $\tilde O(n ^ 2)$ but fails to improve their running time of $\tilde O(n ^ {2 + 2 / 3})$. It has been conjectured that no algorithm in $O(n ^ {2.5 - \epsilon})$ worst-case update time exists. For graphs without negative cycles, we meet this conjectured lower bound by introducing a Monte Carlo algorithm running in randomized $\tilde O(n ^ {2.5})$ time while keeping the $\tilde O(n ^ 2)$ space bound from the previous algorithm. Our breakthrough is made possible by the idea of ``hop-dominant shortest paths,'' which are shortest paths with a constraint on hops (number of vertices) that remain shortest after we relax the constraint by a constant factor.


翻译:暂无翻译

0
下载
关闭预览

相关内容

本专题讨论会主要讨论离散问题之有效演算法与资料结构。除了这些方法和结构的设计,还包括它们的使用、性能分析以及与它们的发展或局限性相关的数学问题。性能分析可以是分析性的,也可以是实验性的,可以是针对最坏情况或预期情况的性能。研究可以是理论性的,也可以是基于实践中出现的数据集,可以解决绩效分析中涉及的方法学问题。官网链接:https://www.siam.org/conferences/cm/conference/soda20
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员