Understanding the geometry of collision-free configuration space (C-free) in the presence of task-space obstacles is an essential ingredient for collision-free motion planning. While it is possible to check for collisions at a point using standard algorithms, to date no practical method exists for computing C-free regions with rigorous certificates due to the complexity of mapping task-space obstacles through the kinematics. In this work, we present the first to our knowledge rigorous method for approximately decomposing a rational parametrization of C-free into certified polyhedral regions. Our method, called C-IRIS (C-space Iterative Regional Inflation by Semidefinite programming), generates large, convex polytopes in a rational parameterization of the configuration space which are rigorously certified to be collision-free. Such regions have been shown to be useful for both optimization-based and randomized motion planning. Based on convex optimization, our method works in arbitrary dimensions, only makes assumptions about the convexity of the obstacles in the task space, and is fast enough to scale to realistic problems in manipulation. We demonstrate our algorithm's ability to fill a non-trivial amount of collision-free C-space in several 2-DOF examples where the C-space can be visualized, as well as the scalability of our algorithm on a 7-DOF KUKA iiwa, a 6-DOF UR3e and 12-DOF bimanual manipulators. An implementation of our algorithm is open-sourced in Drake. We furthermore provide examples of our algorithm in interactive Python notebooks.
翻译:在任务空间障碍物的存在下,了解无碰撞配置空间(C-free)的几何结构是无碰撞运动规划的基本要素。虽然可以使用标准算法检查点的碰撞情况,但到目前为止,由于将任务空间障碍物映射通过运动学的复杂性,没有实际方法计算带有严格证书的C-free区域。本文介绍了第一种据我们所知的严格方法,用于将有理参数化的C-free近似分解为认证的多面体区域。我们的方法名为C-IRIS(C-space Iterative Regional Inflation by Semidefinite programming),在理性参数化的配置空间中生成大型凸多面体,这些多面体被严格证明是无碰撞的。已经证明这样的区域对基于优化的和随机的运动规划都非常有用。基于凸优化,我们的方法在任意维度上都能工作,仅对任务空间中的障碍物凸性做出假设,并且足够快,可以扩展到操作中的实际问题。我们展示了我们的算法在几个可以可视化的二自由度示例中填充了大量的无碰撞C-space,并且在7自由度KUKA iiwa、6自由度UR3e和12自由度双臂操纵器上展示了算法的可扩展性。我们的算法的实现在Drake中开源。此外,我们提供了我们算法在交互式Python笔记本中的示例。