A dozen papers have considered the concept of negation of probability distributions (pd) introduced by Yager. Usually, such negations are generated point-by-point by functions defined on a set of probability values and called here negators. Recently it was shown that Yager negator plays a crucial role in the definition of pd-independent linear negators: any linear negator is a function of Yager negator. Here, we prove that the sequence of multiple negations of pd generated by a linear negator converges to the uniform distribution with maximal entropy. We show that any pd-independent negator is non-involutive, and any non-trivial linear negator is strictly contracting. Finally, we introduce an involutive negator in the class of pd-dependent negators that generates an involutive negation of probability distributions.
翻译:十二篇论文考虑了Yager提出的否定概率分布(pd)的概念。通常,这种否定是根据一组概率值定义的函数逐点生成的,这些函数是按一组概率值定义的,并在此命名。最近,有证据表明,Yager negator在Pd-独立线性射线分子的定义中发挥着关键作用:任何线性分离器都是Yager negator的函数。在这里,我们证明,线性喷射器产生的对pd的多重否定的顺序会与统一分布相交汇,并带有最大引力。我们显示,任何单向的鼠标是非不参与的,任何非三维线性线性线性射线分子正在严格订约。最后,我们引入了一种无演化的分离器,在依赖鼠标的类别中产生对概率分布的不演变的否定。