We present the Sequential Aggregation and Rematerialization (SAR) scheme for distributed full-batch training of Graph Neural Networks (GNNs) on large graphs. Large-scale training of GNNs has recently been dominated by sampling-based methods and methods based on non-learnable message passing. SAR on the other hand is a distributed technique that can train any GNN type directly on an entire large graph. The key innovation in SAR is the distributed sequential rematerialization scheme which sequentially re-constructs then frees pieces of the prohibitively large GNN computational graph during the backward pass. This results in excellent memory scaling behavior where the memory consumption per worker goes down linearly with the number of workers, even for densely connected graphs. Using SAR, we report the largest applications of full-batch GNN training to-date, and demonstrate large memory savings as the number of workers increases. We also present a general technique based on kernel fusion and attention-matrix rematerialization to optimize both the runtime and memory efficiency of attention-based models. We show that, coupled with SAR, our optimized attention kernels lead to significant speedups and memory savings in attention-based GNNs.


翻译:我们用大图表展示了成形神经网络图像全成分布式全批培训的序列聚合和再物质化(SAR)计划。GNN的大规模培训最近以基于非可忽略信息传递的抽样方法为主。另一方面,SAR是一种分布式技术,可以直接用整个大图培训任何GNN类型的GNN。SAR的关键创新是分布式连续再材料化计划,在后向传递过程中按顺序重新构建,然后释放出令人无法接受的大GNN计算图的碎片。这导致出色的记忆缩放行为,使每个工人的记忆消耗量与工人数量线性下降,甚至与密集连接的图形下降。我们使用SAR报告全包GNN培训的最大应用,并显示随着工人人数的增加而大量节省的记忆量。我们还介绍了一种基于内核聚和注意力矩阵的普通技术,以优化关注模型的运行时间和记忆效率。我们展示了与SAAR一道,我们优化了对GNN的注意力和记忆速度的节省。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
14+阅读 · 2021年6月27日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年8月12日
Arxiv
9+阅读 · 2018年2月4日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
14+阅读 · 2021年6月27日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年8月12日
Arxiv
9+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员