This work introduces the novel task of Source-free Multi-target Domain Adaptation and proposes adaptation framework comprising of \textbf{Co}nsistency with \textbf{N}uclear-Norm Maximization and \textbf{Mix}Up knowledge distillation (\textit{CoNMix}) as a solution to this problem. The main motive of this work is to solve for Single and Multi target Domain Adaptation (SMTDA) for the source-free paradigm, which enforces a constraint where the labeled source data is not available during target adaptation due to various privacy-related restrictions on data sharing. The source-free approach leverages target pseudo labels, which can be noisy, to improve the target adaptation. We introduce consistency between label preserving augmentations and utilize pseudo label refinement methods to reduce noisy pseudo labels. Further, we propose novel MixUp Knowledge Distillation (MKD) for better generalization on multiple target domains using various source-free STDA models. We also show that the Vision Transformer (VT) backbone gives better feature representation with improved domain transferability and class discriminability. Our proposed framework achieves the state-of-the-art (SOTA) results in various paradigms of source-free STDA and MTDA settings on popular domain adaptation datasets like Office-Home, Office-Caltech, and DomainNet. Project Page: https://sites.google.com/view/conmix-vcl
翻译:这项工作引入了无源多目标适应的新任务, 并提出了由\ textbf{Co}n}N}unclear- Norm 最大化和\ textbff{Mix}更新知识蒸馏(\ textit{Conmix})组成的适应框架, 以解决这一问题。 这项工作的主要动机是解决无源无源的单一和多目标适应模式( SMTDA) 的单一和多目标适应( SMTDA ) 问题, 由于对数据共享有各种与隐私有关的限制, 目标调整期间无法提供标记的源数据。 无源方法将假标签作为目标对象, 改进目标调整。 我们引入了维护增强和使用假标签改进方法来减少杂音假标签标签。 此外, 我们提议了新型的Mixupual distruction(MKDDD), 包括各种无源的 STD- creal- deal- reflical- refilable性办公室。