Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
翻译:为了解决这一问题,最近提出了许多无源、无监管的域适应方法(SFUDA),这些方法从预先培训的源模式向无标签的目标领域转移知识,而没有源数据则无法获取。全面审查SFUDA的这些工作具有重大意义。在本文件中,我们从技术角度对现有SFUDA方法进行及时和系统的文献审查。具体地说,我们将目前的SFUDA研究分为两类,即SFUDA白箱和SFUDA黑盒,并进一步根据它们使用的不同学习战略将其分为更细的子类。我们还调查了每个子类方法的挑战,讨论了白箱和黑箱SFUDA的优势/缺陷。我们从技术角度对现有SFUDA方法进行及时和系统的文献审查。具体地说,我们将目前的SFUDA研究分为两个组,即SFUDA和黑盒SFUDA,进一步将其分为更细小的子类。我们还调查了每个子类方法的挑战,讨论了白箱和黑盒SFUDA方法的优势/缺陷。我们用了一些共同的基准模型,最后用了一些未来数据分析。