The scene graph is a new data structure describing objects and their pairwise relationship within image scenes. As the size of scene graph in vision applications grows, how to losslessly and efficiently store such data on disks or transmit over the network becomes an inevitable problem. However, the compression of scene graph is seldom studied before because of the complicated data structures and distributions. Existing solutions usually involve general-purpose compressors or graph structure compression methods, which is weak at reducing redundancy for scene graph data. This paper introduces a new lossless compression framework with adaptive predictors for joint compression of objects and relations in scene graph data. The proposed framework consists of a unified prior extractor and specialized element predictors to adapt for different data elements. Furthermore, to exploit the context information within and between graph elements, Graph Context Convolution is proposed to support different graph context modeling schemes for different graph elements. Finally, a learned distribution model is devised to predict numerical data under complicated conditional constraints. Experiments conducted on labeled or generated scene graphs proves the effectiveness of the proposed framework in scene graph lossless compression task.
翻译:暂无翻译