We tackle the problem of minimum-time flight for a quadrotor through a sequence of waypoints in the presence of obstacles while exploiting the full quadrotor dynamics. Early works relied on simplified dynamics or polynomial trajectory representations that did not exploit the full actuator potential of the quadrotor, and, thus, resulted in suboptimal solutions. Recent works can plan minimum-time trajectories; yet, the trajectories are executed with control methods that do not account for obstacles. Thus, a successful execution of such trajectories is prone to errors due to model mismatch and in-flight disturbances. To this end, we leverage deep reinforcement learning and classical topological path planning to train robust neural-network controllers for minimum-time quadrotor flight in cluttered environments. The resulting neural network controller demonstrates substantially better performance of up to 19\% over state-of-the-art methods. More importantly, the learned policy solves the planning and control problem simultaneously online to account for disturbances, thus achieving much higher robustness. As such, the presented method achieves 100% success rate of flying minimum-time policies without collision, while traditional planning and control approaches achieve only 40%. The proposed method is validated in both simulation and the real world, with quadrotor speeds of up to 42km/h and accelerations of 3.6g.


翻译:早期工程依靠简化的动力学或超声波轨迹图表,没有利用二次钻探器的全部振动潜能,因而导致不优化的解决办法。近期工程可以规划最短时间轨迹;然而,轨迹是用不考虑障碍的控制方法执行的。因此,由于模型不匹配和飞行干扰,成功执行这种轨迹容易出错。为此,我们利用深度加固学习和古典地貌路径规划来训练坚固的神经网络控制器,以便在封闭的环境中进行最短时间的二次钻探飞行,从而导致出现不理想的解决方案。由此产生的神经网络控制器显示,在最先进的方法上,最多可达19 ⁇ ;更重要的是,所学的政策解决了规划和控制问题,同时在网上对扰动进行核算,从而实现更大的稳健性。因此,我们提出的方法只能达到100%的神经网络控制器,同时在40度上实现最低速度的飞行速度,同时实现最低速度的飞行速度的模拟,同时实现40度的飞行速度的模拟。

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月7日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员