Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms and has the same mean when integrated against each of the $n$ functions. If $ N \gg n$ this results in a huge reduction of complexity. We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling". We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $N\gg n$ regime. A Python implementation is available at \url{https://github.com/FraCose/Recombination_Random_Algos}.
翻译:考虑到对美元原子和一套美元实际价值的功能支持的离散概率测量方法,存在一种概率测量方法,这种测量方法以原始美元原子的一分一美元+1美元作为依据,在对每个美元功能进行整合时具有相同的平均值。如果N$\ggn美元可以大幅降低复杂性。我们用负锥形对中继器进行简单的几何定性,并得出一种随机算法,用“greedy几何抽样”来计算这一新测量方法。我们随后研究其特性,并以合成和现实世界数据为基准,以表明其在美元制度下可能非常有益。Python的落实情况可在以下https://github.com/FraCose/Recombination_Random_Algos}查阅。