Time Series Classification and Extrinsic Regression are important and challenging machine learning tasks. Deep learning has revolutionized natural language processing and computer vision and holds great promise in other fields such as time series analysis where the relevant features must often be abstracted from the raw data but are not known a priori. This paper surveys the current state of the art in the fast-moving field of deep learning for time series classification and extrinsic regression. We review different network architectures and training methods used for these tasks and discuss the challenges and opportunities when applying deep learning to time series data. We also summarize two critical applications of time series classification and extrinsic regression, human activity recognition and satellite earth observation.
翻译:时间序列分类和极端回归是重要和具有挑战性的机器学习任务。深层次的学习使自然语言处理和计算机视觉发生了革命性的变化,在时间序列分析等其他领域也有很大的希望,这些领域的相关特征往往必须从原始数据中提取,但事先不为人所知。本文调查了在时间序列分类和外部回归方面快速发展的深层学习领域的最新动态。我们审查了用于这些任务的不同的网络架构和培训方法,并讨论了在对时间序列数据进行深层次学习时遇到的挑战和机会。我们还总结了时间序列分类和极端回归、人类活动识别和卫星地球观测的两种关键应用。