High resolution (HR) 3D medical image segmentation plays an important role in clinical diagnoses. However, HR images are difficult to be directly processed by mainstream graphical cards due to limited video memory. Therefore, most existing 3D medical image segmentation methods use patch-based models, which ignores global context information that is useful in accurate segmentation and has low inference efficiency. To address these problems, we propose a super-resolution (SR) guided patch-free 3D medical image segmentation framework that can realize HR segmentation with global information of low-resolution (LR) input. The framework contains two tasks: semantic segmentation (main task) and super resolution (auxiliary task). To balance the information loss with the LR input, we introduce a Self-Supervised Guidance Module (SGM), which employs a selective search method to crop a HR patch from the original image as restoration guidance. Multi-scale convolutional layers are used to mitigate the scale-inconsistency between the HR guidance features and the LR features. Moreover, we propose a Task-Fusion Module (TFM) to exploit the inter connections between segmentation and SR task. This module can also be used for Test Phase Fine-tuning (TPF), leading to a better model generalization ability. When predicting, only the main segmentation task is needed, while other modules can be removed to accelerate the inference. The experiments results on two different datasets show that our framework outperforms current patch-based and patch-free models. Our model also has a four times higher inference speed compared to traditional patch-based methods. Our codes are available at: https://github.com/Dootmaan/PFSeg-Full.
翻译:高分辨率 (HR) 3D 医疗图像分割在临床诊断中起着重要作用。 但是, HR 图像由于视频记忆有限, 很难直接由主流图形卡直接处理。 因此, 大部分现有的 3D 医疗图像分割方法使用基于补丁的模型, 忽略了全球背景信息, 这些信息对准确的分割有用, 且推导效率低。 为了解决这些问题, 我们提议了一个超分辨率( SR) 引导的无缝 3D 医疗图像分割框架, 它可以通过低分辨率( LR) 输入的全球信息实现HR 分割。 这个框架包含两个任务: 语义分割( 任务) 和超分辨率( 辅助任务) 。 为了平衡信息损失与 LR 输入之间的平衡, 我们引入了一个基于补丁的自我强化指导模块( SGM ), 使用选择性搜索方法从原始图像中提取一个人力资源补丁, 作为恢复指导。 多尺度的变压层层层用于减轻基于 HR 指导特性和 LRL 输入的全球信息 。 此外, 我们提议一个任务定义模块( TTMMM) 来利用当前连接框架之间的连接连接, 比较能力 。 这个阶段任务需要一般任务 。 这个模块 。 只能路路路段 只能 需要 。 。 该任务 只能 需要 。 该任务 。 该任务 。 该模块只能用于 。