For a set $P$ of $n$ points in the plane in general position, a non-crossing spanning tree is a spanning tree of the points where every edge is a straight-line segment between a pair of points and no two edges intersect except at a common endpoint. We study the problem of reconfiguring one non-crossing spanning tree of $P$ to another using a sequence of flips where each flip removes one edge and adds one new edge so that the result is again a non-crossing spanning tree of $P$. There is a known upper bound of $2n-4$ flips [Avis and Fukuda, 1996] and a lower bound of $1.5n - 5$ flips. We give a reconfiguration algorithm that uses at most $2n-3$ flips but reduces that to $1.5n-2$ flips when one tree is a path and either: the points are in convex position; or the path is monotone in some direction. For points in convex position, we prove an upper bound of $2d - \Omega(\log d)$ where $d$ is half the size of the symmetric difference between the trees. We also examine whether the happy edges (those common to the initial and final trees) need to flip, and we find exact minimum flip distances for small point sets using exhaustive search.
翻译:对于一般位置的平面上固定的美元点数,非横贯树是横贯各点的树,其中每个边缘是一对点之间的直线段,除共同终点外没有两边缘。我们研究将一个非横贯树($P美元)重新配置为另一棵的问题,使用一个翻转序列,每个翻转移将消除一个边缘,并增加一个新边缘,这样结果又是一个非交叉的横贯树($P美元)。已知的上界值为$-4的翻转[Avis和Fukuda,1996年],下界值为1.5-5美元。我们给出了一个配置算法,最多使用$-3美元翻转,但如果一棵树是一条路径,则将这一算减为1.5-2美元翻转,要么是点位于锥形位置;或者路径是某种方向的单线。对于正向位置的点,我们证明,在矩形位置上有一个上限为$-2d-Omega($)的上框框值为$-1.5-500-500美元翻翻的下。我们用最小的直径对树的边是最小的最小的底,我们是否要对正对正的底,我们是否要对正对正对正对正对正的底的底,对正对正对正对正对正对正对正对正对正的底的底,对正对正对正对正对正对正对正对正对正对正对正对正的底,要进行一直。