We establish that randomly initialized neural networks, with large width and a natural choice of hyperparameters, have nearly independent outputs exactly when their activation function is nonlinear with zero mean under the Gaussian measure: $\mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z)]=0$. For example, this includes ReLU and GeLU with an additive shift, as well as tanh, but not ReLU or GeLU by themselves. Because of their nearly independent outputs, we propose neural networks with zero-mean activation functions as a promising candidate for the Alignment Research Center's computational no-coincidence conjecture -- a conjecture that aims to measure the limits of AI interpretability.
翻译:暂无翻译