High-performance classical simulator for quantum circuits, in particular the tensor network contraction algorithm, has become an important tool for the validation of noisy quantum computing. In order to address the memory limitations, the slicing technique is used to reduce the tensor dimensions, but it could also lead to additional computation overhead that greatly slows down the overall performance. This paper proposes novel lifetime-based methods to reduce the slicing overhead and improve the computing efficiency, including an interpretation method to deal with slicing overhead, an in-place slicing strategy to find the smallest slicing set and an adaptive tensor network contraction path refiner customized for Sunway architecture. Experiments show that in most cases the slicing overhead with our in-place slicing strategy would be less than the cotengra, which is the most used graph path optimization software at present. Finally, the resulting simulation time is reduced to 96.1s for the Sycamore quantum processor RQC, with a sustainable single-precision performance of 308.6Pflops using over 41M cores to generate 1M correlated samples, which is more than 5 times performance improvement compared to 60.4 Pflops in 2021 Gordon Bell Prize work.


翻译:高性能经典模拟器用于模拟量子电路,特别是张量网络缩并算法,已成为验证嘈杂量子计算的重要工具。为了解决内存限制,采用切片技术来减少张量维度,但这也可能导致额外的计算开销,从而大大降低总体性能。本文提出了新颖的基于寿命的方法来减少切片开销并提高计算效率,包括一种解释方法来处理切片开销,一种就地切片策略来找到最小切片集合以及一个适用于Sunway架构的自适应张量网络缩并路径调整器。实验表明,在大多数情况下,我们采用的就地切片策略的切片开销会比cotengra小,cotengra是目前最常用的图路径优化软件之一。最后,生成1百万个相关样本的Sycamore量子处理器RQC的模拟时间缩短到了96.1秒,单精度性能持续为308.6Pflops,使用超过41M个核心,这比2021年Gordon Bell Prize work中的60.4Pflops多了5倍以上的性能提高。

0
下载
关闭预览

相关内容

High Performance Computing. For example, IBM's Blue Gene
NISQ量子计算机上蛋白质-配体相互作用的大尺度模拟
专知会员服务
4+阅读 · 2022年8月3日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
16+阅读 · 2021年8月4日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
1+阅读 · 2023年5月14日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员