We study the fixed-parameter tractability of the following fundamental problem: given two directed graphs $\vec H$ and $\vec G$, count the number of copies of $\vec H$ in $\vec G$. The standard setting, where the tractability is well understood, uses only $|\vec H|$ as a parameter. In this paper we take a step forward, and adopt as a parameter $|\vec H|+d(\vec G)$, where $d(\vec G)$ is the maximum outdegree of $|\vec G|$. Under this parameterization, we completely characterize the fixed-parameter tractability of the problem in both its non-induced and induced versions through two novel structural parameters, the fractional cover number $\rho^*$ and the source number $\alpha_s$. On the one hand we give algorithms with running time $f(|\vec H|,d(\vec G)) \cdot |\vec G|^{\rho^*\!(\vec H)+O(1)}$ and $f(|\vec H|,d(\vec G)) \cdot |\vec G|^{\alpha_s(\vec H)+O(1)}$ for counting respectively the copies and induced copies of $\vec H$ in $\vec G$; on the other hand we show that, unless the Exponential Time Hypothesis fails, for any class $\vec C$ of directed graphs the (induced) counting problem is fixed-parameter tractable if and only if $\rho^*(\vec C)$ ($\alpha_s(\vec C)$) is bounded. These results explain how the orientation of the pattern can make counting easy or hard, and prove that a classic algorithm by Chiba and Nishizeki and its extensions (Chiba, Nishizeki SICOMP 85; Bressan Algorithmica 21) are optimal unless ETH fails.
翻译:我们研究以下基本问题的固定参数可移动性 : 给两个直方向图 $\ vec H$和$\ vec G$, 以美元计数 $\ vec G$。 在标准设置中, 清晰理解可移动性, 只使用 $ vec H $ 。 在本文中, 我们向前迈出一步, 并采用一个参数 $@vec H $ (vec G), 其中 $ (vec) 是 $@vec G$ 的顶值 。 在此参数化下, 我们通过两个新结构参数, 将问题的非导和导出版本中, 标数 $\ 美元 和源数 $\ alpha_ 美元 。 一方面, 我们给出的算法只有运行时间 $( vec H%, d (vec) 美元)\ cdddot 美元, 任何Oc) 和 美元(c) crowc) 的直径(c) 和 美元(c_c) 直径(c) 的直径解的直径(c) (c) (c) (c) (c) 立方和(c) (c) 立法副本, 解的解的解的解的解的解的解的解的(c)