A central challenge of building more powerful Graph Neural Networks (GNNs) is the oversmoothing phenomenon, where increasing the network depth leads to homogeneous node representations and thus worse classification performance. While previous works have only demonstrated that oversmoothing is inevitable when the number of graph convolutions tends to infinity, in this paper, we precisely characterize the mechanism behind the phenomenon via a non-asymptotic analysis. Specifically, we distinguish between two different effects when applying graph convolutions -- an undesirable mixing effect that homogenizes node representations in different classes, and a desirable denoising effect that homogenizes node representations in the same class. By quantifying these two effects on random graphs sampled from the Contextual Stochastic Block Model (CSBM), we show that oversmoothing happens once the mixing effect starts to dominate the denoising effect, and the number of layers required for this transition is $O(\log N/\log (\log N))$ for sufficiently dense graphs with $N$ nodes. We also extend our analysis to study the effects of Personalized PageRank (PPR) on oversmoothing. Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth and are outperformed by the graph convolution approach on certain graphs. Finally, we support our theoretical results with numerical experiments, which further suggest that the oversmoothing phenomenon observed in practice may be exacerbated by the difficulty of optimizing deep GNN models.


翻译:建设更强大的图形神经网络(GNNS)的一个中心挑战是过度吸附现象。 网络深度的扩大导致同一节点表达方式的同质化,从而导致更差的分类性能。 虽然先前的工程仅表明,当图形变异的数量趋向于无限时,过度吸附是不可避免的, 但在本文件中,我们通过非非无损分析来精确地描述该现象背后的机制。 具体地说,我们在应用图变组合时区分两种不同效果 -- -- 一种不可取的混合效应,使不同类别中的节点表达方式趋同,以及一种理想的分解效应,使同一类别中的节点表达方式趋同。我们通过量化这两个对从上下文图块模型(CSBM)取样的随机图的随机效果是不可避免的。 我们表明,当混合效应开始支配消融效应时,这种转变所需的层数是$O(log N/\log (\log N) 美元,用于以美元表示足够稠度的精度的精度图形,我们的分析也扩展了我们个人化的图形的精确度结果,在最后的图层中显示,而我们最深层的PPPPPP的图形显示,这种结果可能超越了。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
0+阅读 · 2023年2月21日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员