Monocular depth estimation can play an important role in addressing the issue of deriving scene geometry from 2D images. It has been used in a variety of industries, including robots, self-driving cars, scene comprehension, 3D reconstructions, and others. The goal of our method is to create a lightweight machine-learning model in order to predict the depth value of each pixel given only a single RGB image as input with the Unet structure of the image segmentation network. We use the NYU Depth V2 dataset to test the structure and compare the result with other methods. The proposed method achieves relatively high accuracy and low rootmean-square error.
翻译:单体深度估计可以在解决从 2D 图像中得出场景几何学问题方面发挥重要作用。 它已被各种行业使用,包括机器人、自驾驶汽车、场景理解、3D 重建等。 我们的方法目标是创建一个轻量级机器学习模型,以便预测每个像素的深度值,仅以一个 RGB 图像作为图像分割网络 Unet 结构的输入。 我们使用 NYU 深度V2 数据集测试结构,并将结果与其他方法进行比较。 拟议方法的精度相对较高,根值较低。