Convolutional neural networks (CNN) are widely used in resource-constrained devices in IoT applications. In order to reduce the computational complexity and memory footprint, the resource-constrained devices use fixed-point representation. This representation consumes less area and energy in hardware with similar classification accuracy compared to the floating-point ones. However, to employ the low-precision fixed-point representation, various considerations to gain high accuracy are required. Although many quantization and re-training techniques are proposed to improve the inference accuracy, these approaches are time-consuming and require access to the entire dataset. This paper investigates the effect of different fixed-point hardware units on CNN inference accuracy. To this end, we provide a framework called Fixflow to evaluate the effect of fixed-point computations performed at hardware level on CNN classification accuracy. We can employ different fixed-point considerations at the hardware accelerators.This includes rounding methods and adjusting the precision of the fixed-point operation's result. Fixflow can determine the impact of employing different arithmetic units (such as truncated multipliers) on CNN classification accuracy. Moreover, we evaluate the energy and area consumption of these units in hardware accelerators. We perform experiments on two common MNIST and CIFAR-10 datasets. Our results show that employing different methods at the hardware level specially with low-precision, can significantly change the classification accuracy.


翻译:为了减少计算复杂性和记忆足迹,受资源限制的装置使用固定点表示法。这种表示法比浮动点表示法消耗的硬硬件面积和能量较少,其分类精确度与浮动点表示法相似。然而,为了使用低精度定点表示法,需要采用各种考虑来提高精确度。虽然提出了许多量化和再培训技术来提高定点操作的准确性,但这些方法很费时,需要查阅整个数据集。本文调查了不同固定点硬件单位对CNN精确度的影响。为此,我们提供了一个称为固定点流的框架,以评价在固定点计算法对CNN分类精确度的硬件水平的影响。我们可以在硬件加速器中采用不同的固定点考虑法。这包括四舍五入法和调整定点操作结果的精确性。固定点计算法可以确定使用不同计算单位(如分解的指数级)对CNNCR的精确度的影响。此外,我们用两组的硬点计算法测试了我们共同的硬度数据区域。我们用这些硬度区域来评估常规的硬度的硬度。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关VIP内容
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员