Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems. In this work, we stress-test the method on both simple mass-spring systems and more complex and realistic systems with several internal and external forces, including a system with multiple connected tanks. We quantify performance under various conditions and show that imposing different assumptions greatly affect the performance during training presenting advantages and limitations of the method. We demonstrate that port-Hamiltonian neural networks can be extended to larger dimensions with state-dependent ports. We consider learning on systems with known and unknown external forces and show how it can be used to detect deviations in a system and still provide a valid model when the deviations are removed. Finally, we propose a symmetric high-order integrator for improved training on sparse and noisy data.
翻译:基于汉密尔顿配方的混合机学习最近成功地展示了简单的机械系统。在这项工作中,我们用若干内部和外部力量,包括多罐连接的系统,对简单的大规模循环系统和更复杂、更现实的系统进行压力测试,以量化各种条件下的性能,并表明在培训期间采用不同的假设会严重影响性能,显示方法的优点和局限性。我们证明港口-汉堡神经网络可以扩展到国家依赖的港口的更大层面。我们考虑学习有已知和未知外部力量的系统,并表明如何利用这些系统探测系统偏差,并在消除偏差时仍然提供一个有效的模型。最后,我们提议采用一个对称性高顺序集成器,以改进对稀疏和吵吵数据的培训。