Information theory is of importance to machine learning, but the notation for information-theoretic quantities is sometimes opaque. The right notation can convey valuable intuitions and concisely express new ideas. We propose such a notation for machine learning users and expand it to include information-theoretic quantities between events (outcomes) and random variables. We apply this notation to a popular information-theoretic acquisition function in Bayesian active learning which selects the most informative (unlabelled) samples to be labelled by an expert. We demonstrate the value of our notation when extending the acquisition function to the core-set problem, which consists of selecting the most informative samples \emph{given} the labels.
翻译:信息理论对于机器学习很重要,但信息理论数量的说明有时是不透明的。正确的标记可以传达宝贵的直觉和简明地表达新的想法。我们建议机器学习用户使用这样的标记,并将它扩大到包括事件(结果)和随机变量之间的信息理论数量。我们将这个标记应用到贝叶斯积极学习的流行信息理论获取功能中,该功能选择了专家贴上标签的最丰富(未贴标签)的样本。我们在将获取功能扩展至核心设置问题时展示了我们标记的价值,核心设置问题包括选择信息最丰富的样本 emph{given} 标签。