Integrable systems have provided various insights into physical phenomena and mathematics. The way of constructing many-body integrable systems is limited to few ansatzes for the Lax pair, except for highly inventive findings of conserved quantities. Machine learning techniques have recently been applied to broad physics fields and proven powerful for building non-trivial transformations and potential functions. We here propose a machine learning approach to a systematic construction of classical integrable systems. Given the Hamiltonian or samples in latent space, our neural network simultaneously learns the corresponding natural Hamiltonian in real space and the canonical transformation between the latent space and the real space variables. We also propose a loss function for building integrable systems and demonstrate successful unsupervised learning for the Toda lattice. Our approach enables exploring new integrable systems without any prior knowledge about the canonical transformation or any ansatz for the Lax pair.
翻译:可耐机系统对物理现象和数学提供了各种洞察力。建造许多机体可耐机系统的方法仅限于对拉克斯对体的几处肛门,只有对节能量的高度发明性发现除外。机器学习技术最近被应用于广泛的物理领域,并被证明对建设非三重变换和潜在功能具有强大作用。我们在这里提出一个系统建设经典不可变换系统的机械学习方法。考虑到汉密尔顿或潜空样本,我们的神经网络同时学习实际空间中相应的自然汉密尔顿人和潜在空间与实际空间变量之间的巨型变形。我们还提出了建设不可变形系统的损失功能,并展示了对托达拉提斯的成功无监督的学习。我们的方法可以探索新的不可变换系统,而无需事先对卡门变形或对拉克斯对体的任何安萨茨的任何了解。