How much knowledge do pretrained language models hold? Recent research observed that pretrained transformers are adept at modeling semantics but it is unclear to what degree they grasp human knowledge, or how to ensure they do so. In this paper we incorporate knowledge-awareness in language model pretraining without changing the transformer architecture, inserting explicit knowledge layers, or adding external storage of semantic information. Rather, we simply signal the existence of entities to the input of the transformer in pretraining, with an entity-extended tokenizer; and at the output, with an additional entity prediction task. Our experiments show that solely by adding these entity signals in pretraining, significantly more knowledge is packed into the transformer parameters: we observe improved language modeling accuracy, factual correctness in LAMA knowledge probing tasks, and semantics in the hidden representations through edge probing.We also show that our knowledge-aware language model (KALM) can serve as a drop-in replacement for GPT-2 models, significantly improving downstream tasks like zero-shot question-answering with no task-related training.


翻译:受过训练的语言模型有多少知识? 最近的研究表明,预先训练的变压器在模拟语义学时非常熟练,但不清楚它们在多大程度上掌握了人类知识,或如何确保这些知识。 本文中我们把知识意识纳入语言模型预培训阶段,而不改变变压器结构,插入明确的知识层,或增加语义信息的外部储存。相反,我们只是向预培训阶段变压器输入的变压器中发出实体的存在信号,配有实体扩展的代用品;在输出时,增加实体预测任务。我们的实验显示,仅仅通过在预培训中添加这些实体信号,变压器参数中就包含了更多的知识:我们看到语言建模的准确性得到改善,LAMA知识探测任务的实际正确性,通过边缘探测在隐蔽的表达中显示语义模型(KALM)可以作为GPT-2模型的滴置替代,大大改进下游任务,如没有任务培训的零发问题解。

1
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
专知会员服务
123+阅读 · 2020年9月8日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2019年9月5日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
6+阅读 · 2019年3月19日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员