Federated learning (FL) has attracted widespread attention because it supports the joint training of models by multiple participants without moving private dataset. However, there are still many security issues in FL that deserve discussion. In this paper, we consider three major issues: 1) how to ensure that the training process can be publicly audited by any third party; 2) how to avoid the influence of malicious participants on training; 3) how to ensure that private gradients and models are not leaked to third parties. Many solutions have been proposed to address these issues, while solving the above three problems simultaneously is seldom considered. In this paper, we propose a publicly auditable and privacy-preserving federated learning scheme that is resistant to malicious participants uploading gradients with wrong directions and enables anyone to audit and verify the correctness of the training process. In particular, we design a robust aggregation algorithm capable of detecting gradients with wrong directions from malicious participants. Then, we design a random vector generation algorithm and combine it with zero sharing and blockchain technologies to make the joint training process publicly auditable, meaning anyone can verify the correctness of the training. Finally, we conduct a series of experiments, and the experimental results show that the model generated by the protocol is comparable in accuracy to the original FL approach while keeping security advantages.
翻译:暂无翻译