While recent studies have examined the leaning impact of large language model (LLM) in educational contexts, the affective dynamics of LLM-mediated tutoring remain insufficiently understood. This work introduces the first ensemble-LLM framework for large-scale affect sensing in tutoring dialogues, advancing the conversation on responsible pathways for integrating generative AI into education by attending to learners' evolving affective states. To achieve this, we analyzed two semesters' worth of 16,986 conversational turns exchanged between PyTutor, an LLM-powered AI tutor, and 261 undergraduate learners across three U.S. institutions. To investigate learners' emotional experiences, we generate zero-shot affect annotations from three frontier LLMs (Gemini, GPT-4o, Claude), including scalar ratings of valence, arousal, and learning-helpfulness, along with free-text emotion labels. These estimates are fused through rank-weighted intra-model pooling and plurality consensus across models to produce robust emotion profiles. Our analysis shows that during interaction with the AI tutor, students typically report mildly positive affect and moderate arousal. Yet learning is not uniformly smooth: confusion and curiosity are frequent companions to problem solving, and frustration, while less common, still surfaces in ways that can derail progress. Emotional states are short-lived--positive moments last slightly longer than neutral or negative ones, but they are fragile and easily disrupted. Encouragingly, negative emotions often resolve quickly, sometimes rebounding directly into positive states. Neutral moments frequently act as turning points, more often steering students upward than downward, suggesting opportunities for tutors to intervene at precisely these junctures.


翻译:尽管近期研究已考察大型语言模型在教育情境中的学习影响,但LLM介导的辅导过程中的情感动态仍未得到充分理解。本研究首次提出用于辅导对话大规模情感感知的集成LLM框架,通过关注学习者不断演化的情感状态,推进关于将生成式人工智能融入教育的负责任路径的讨论。为此,我们分析了两个学期内16,986个对话轮次,这些对话发生在LLM驱动的AI导师PyTutor与来自美国三所高校的261名本科生之间。为探究学习者的情感体验,我们利用三个前沿LLM(Gemini、GPT-4o、Claude)生成零样本情感标注,包括效价、唤醒度和学习帮助性的标量评分,以及自由文本情感标签。通过秩加权模型内池化和跨模型多数共识融合这些估计值,生成稳健的情感画像。分析表明,在与AI导师互动期间,学生通常呈现轻度积极情感和中等唤醒度。但学习过程并非始终顺畅:困惑与好奇常伴随问题解决过程,而沮丧情绪虽较少出现,仍会以可能阻碍进展的方式显现。情感状态持续时间短暂——积极时刻略长于中性或消极状态,但脆弱且易受干扰。值得鼓舞的是,消极情绪常快速消解,有时直接反弹至积极状态。中性时刻常作为转折点,更多引导学生向上而非向下发展,这提示导师恰可在此类节点实施干预。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员