The theory for multiplier empirical processes has been one of the central topics in the development of the classical theory of empirical processes, due to its wide applicability to various statistical problems. In this paper, we develop theory and tools for studying multiplier $U$-processes, a natural higher-order generalization of the multiplier empirical processes. To this end, we develop a multiplier inequality that quantifies the moduli of continuity of the multiplier $U$-process in terms of that of the (decoupled) symmetrized $U$-process. The new inequality finds a variety of applications including (i) multiplier and bootstrap central limit theorems for $U$-processes, (ii) general theory for bootstrap $M$-estimators based on $U$-statistics, and (iii) theory for $M$-estimation under general complex sampling designs, again based on $U$-statistics.
翻译:乘数经验过程的理论是发展经验过程经典理论的中心主题之一,因为它广泛适用于各种统计问题;在本文中,我们开发了研究乘数美元过程的理论和工具,这是乘数经验过程的自然更高层次的一般化;为此,我们开发了一种乘数不平等,从(分离的)对称美元过程的(对称的)对乘数美元过程的连续性模式上,量化了乘数美元过程的连续性模式;新的不平等发现了各种应用,包括(一) 美元过程的乘数和靴状中央限值,(二) 以美元统计学为基础的靴杆数(美元)一般理论,以及(三) 在一般复杂抽样设计下以美元统计学为基础的美元估算理论。