We prove a variety of new and refined uniform continuity bounds for entropies of both classical random variables on an infinite state space and of quantum states of infinite-dimensional systems. We obtain the first tight continuity estimate on the Shannon entropy of random variables with a countably infinite alphabet. The proof relies on a new mean-constrained Fano-type inequality and the notion of maximal coupling of random variables. We then employ this classical result to derive the first tight energy-constrained continuity bound for the von Neumann entropy of states of infinite-dimensional quantum systems, when the Hamiltonian is the number operator, which is arguably the most relevant Hamiltonian in the study of infinite-dimensional quantum systems in the context of quantum information theory. The above scheme works only for Shannon- and von Neumann entropies. Hence, to deal with more general entropies, e.g. $\alpha$-R\'enyi and $\alpha$-Tsallis entropies, with $\alpha \in (0,1)$, for which continuity bounds are known only for finite-dimensional systems, we develop a novel approximation scheme which relies on recent results on operator H\"older continuous functions and the equivalence of all Schatten norms in special spectral subspaces of the Hamiltonian. This approach is, as we show, motivated by continuity bounds for $\alpha$-R\'enyi and $\alpha$-Tsallis entropies of random variables that follow from the H\"older continuity of the entropy functionals. Bounds for $\alpha>1$ are provided, too. Finally, we settle an open problem on related approximation questions posed in the recent works by Shirokov on the so-called Finite-dimensional Approximation (FA) property.


翻译:我们为无限状态空间的古典随机变量和无限度系统量子状态的运算员提供了各种新的和精细的统一连续性线条。 我们获得对香农随机变量的随机变数的首次紧紧连续性估计, 其字母可以计算无限。 证据依赖于一个新的平均限制的法诺型不平等和随机变量最大组合的概念。 然后我们利用这一古典结果为无限量系统状态的冯· 纽曼( Neumann) 的随机随机变数获得第一个紧张的连续性, 当汉密尔顿是数字操作员时, 而在量信息理论中, 汉密尔顿是无限量量系统研究中最相关的汉密尔顿量系统。 以上方案只对香农和冯 Neumann entroopies起作用。 因此, 要处理更普遍的异性( 例如: $alpha- R) 和 ALphalphal y( 美元) 开放量子系统的问题( $\ a alphal) entrial entrial entrition, 我们只能从质- hal- develrialalal dealal commalal commactal pal pal roal pal) 系统来了解持续的连续线, 我们在Skinal exal exal dowds exmal proal proal prouts 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
44+阅读 · 2020年12月18日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
85+阅读 · 2020年8月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Dimension-Free Empirical Entropy Estimation
Arxiv
0+阅读 · 2021年5月27日
Arxiv
0+阅读 · 2021年5月26日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
85+阅读 · 2020年8月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员