We study the secure stochastic convex optimization problem. A learner aims to learn the optimal point of a convex function through sequentially querying a (stochastic) gradient oracle. In the meantime, there exists an adversary who aims to free-ride and infer the learning outcome of the learner from observing the learner's queries. The adversary observes only the points of the queries but not the feedback from the oracle. The goal of the learner is to optimize the accuracy, i.e., obtaining an accurate estimate of the optimal point, while securing her privacy, i.e., making it difficult for the adversary to infer the optimal point. We formally quantify this tradeoff between learner's accuracy and privacy and characterize the lower and upper bounds on the learner's query complexity as a function of desired levels of accuracy and privacy. For the analysis of lower bounds, we provide a general template based on information theoretical analysis and then tailor the template to several families of problems, including stochastic convex optimization and (noisy) binary search. We also present a generic secure learning protocol that achieves the matching upper bound up to logarithmic factors.


翻译:我们研究安全的随机孔隙优化问题。 学习者的目的是通过顺序查询一个( 随机) 梯度或触摸器来学习 convex 函数的最佳点。 同时, 存在一个对手, 目的是通过观察学习者的询问来自由驾驶和推断学习者的学习结果。 对手只观察询问的要点, 而不是来自神器的反馈。 学习者的目标是优化准确估计最佳点的准确度, 同时确保她的隐私, 也就是使对手难以推算最佳点 。 我们正式量化了学习者准确性和隐私之间的这一权衡, 并将学习者查询复杂性的上下限定性为所期望的准确度和隐私水平的函数 。 为了分析下限, 我们根据信息理论分析提供一个一般模板, 然后将模板调整为问题的若干家庭, 包括随机相近的 convex 优化和 ( noisy) 二进式搜索 。 我们还提出了一个通用的安全学习协议, 以匹配上框的日志。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
114+阅读 · 2020年10月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
12+阅读 · 2018年6月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年5月27日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
114+阅读 · 2020年10月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
12+阅读 · 2018年6月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员