Deep hashing has been widely applied in large-scale data retrieval due to its superior retrieval efficiency and low storage cost. However, data are often scattered in data silos with privacy concerns, so performing centralized data storage and retrieval is not always possible. Leveraging the concept of federated learning (FL) to perform deep hashing is a recent research trend. However, existing frameworks mostly rely on the aggregation of the local deep hashing models, which are trained by performing similarity learning with local skewed data only. Therefore, they cannot work well for non-IID clients in a real federated environment. To overcome these challenges, we propose a novel federated hashing framework that enables participating clients to jointly train the shared deep hashing model by leveraging the prototypical hash codes for each class. Globally, the transmission of global prototypes with only one prototypical hash code per class will minimize the impact of communication cost and privacy risk. Locally, the use of global prototypes are maximized by jointly training a discriminator network and the local hashing network. Extensive experiments on benchmark datasets are conducted to demonstrate that our method can significantly improve the performance of the deep hashing model in the federated environments with non-IID data distributions.


翻译:由于检索效率较高,储存成本低,在大规模数据检索中广泛采用了深散法,但数据往往分散在数据分类库中,存在隐私问题,因此并不总是可能进行集中的数据储存和检索。利用联合学习的概念来进行深度散列是一个最近的研究趋势。然而,现有框架主要依靠当地深度散列模型的集成,这些模型仅经过与本地偏斜数据进行类似学习的培训,因此,这些数据往往分散在数据分类库中,对非IID客户在真实的联邦环境中无法很好地发挥作用。为了克服这些挑战,我们提议一个新的联合散列散列框架,使参与的客户能够联合培训共同的深度散列模型,利用每个类的原型散列散列代码。在全球范围内,仅使用一种原型散列散列代码传输全球原型将最大限度地减少通信成本和隐私风险的影响。在当地,通过联合培训一个歧视网络和本地散列网络,全球原型模型的使用将达到最大化。为了克服这些挑战,我们共同进行广泛的基准数据集实验,通过利用每类使用一种原型散列的原型代码来联合进行联合测试,从而改进我们的深层环境。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月4日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员