Despite recent progress on semi-supervised federated learning (FL) for medical image diagnosis, the problem of imbalanced class distributions among unlabeled clients is still unsolved for real-world use. In this paper, we study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi), which allows all clients to have only unlabeled data while the server just has a small amount of labeled data. This imFed-Semi problem is addressed by a novel dynamic bank learning scheme, which improves client training by exploiting class proportion information. This scheme consists of two parts, i.e., the dynamic bank construction to distill various class proportions for each local client, and the sub-bank classification to impose the local model to learn different class proportions. We evaluate our approach on two public real-world medical datasets, including the intracranial hemorrhage diagnosis with 25,000 CT slices and skin lesion diagnosis with 10,015 dermoscopy images. The effectiveness of our method has been validated with significant performance improvements (7.61% and 4.69%) compared with the second-best on the accuracy, as well as comprehensive analytical studies. Code is available at https://github.com/med-air/imFedSemi.
翻译:尽管在医疗图像诊断的半监督联邦学习(FL)方面最近取得了进展,但是在医疗图像诊断方面,没有标签的客户之间分类分布不平衡的问题仍然没有解决,供真实世界使用。在本文中,我们研究了一个实际而具有挑战性的问题,即等级不平衡的半监督FL(IMFed-Semi),允许所有客户只拥有未标签的数据,而服务器只是贴有少量标签的数据。这个内在Fed-Semi问题通过一个新的动态银行学习计划来解决,它通过利用课堂比例信息改进客户培训。这个计划包括两个部分,即动态银行建设以蒸馏每个本地客户的不同等级比例,以及次级银行分类以强制采用本地模式学习不同等级。我们评估了我们关于两个公共真实世界医疗数据集的方法,包括25 000张CT切片的内膜血清诊断,以及10 015度的皮肤损伤诊断图像。我们的方法的有效性得到了验证,通过显著的业绩改进(7.1% 和4.69% ) 和 全面分析S-Fim 的RAC-Ram-deal 的精确性研究,在第二版上得到了验证。