We consider the problem of evaluating designs for a two-arm randomized experiment for general response types under both the Neyman randomization model and population model hence generalizing the work of Kapelner et al. (2021). In the Neyman model, the only source of randomness is the treatment manipulation. Under this assumption, there is no free lunch: balanced complete randomization is minimax for estimator mean squared error. In the population model, considering the criterion where unmeasured subject covariates are averaged, we show that optimal perfect-balance designs are generally not achievable. However, in the class of all block designs, the pairwise matching design of Greevy et al. (2004) is optimal in mean squared error. When considering a tail criterion of the effect of unmeasured subject covariates in mean squared error, we prove that the common design of blocking with few blocks, i.e. order of $n^{\alpha}$ blocks for $\alpha \in (1/4,1)$, performs asymptotically optimal for all common experimental responses. Theoretical results are supported by simulations.
翻译:我们考虑了在Neyman随机化模型和人口模型下对一般反应类型进行双臂随机化实验的设计进行评价的问题,从而将Kapelner等人(2021年)的工作普遍化。在Neyman模型中,随机性的唯一来源是处理操纵。在这个假设下,没有免费午餐:均衡的完全随机化是估计点偏差的微型随机化,这是平方差。在人口模型中,考虑到平均平均未测量主题共差的标准,我们表明,最佳的完美平衡设计一般是无法实现的。然而,在所有区块设计类别中,Greevy等人(2004年)的对称匹配设计是最佳的平方错误。在考虑未测量主题共差差差效应的尾标准时,我们证明,用几个区块来封堵的通用设计,即按 $\alpha\ = $ (1/4,1美元) 的平方块的顺序,对所有共同实验反应都表现为最佳。理论结果得到模拟的支持。